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Abstract

All life forms across the globe are experiencing drastic changes 
in environmental conditions as a result of global climate change. 
These environmental changes are happening rapidly, incur substantial 
socioeconomic costs, pose threats to biodiversity and diminish a 
species’ potential to adapt to future environments. Understanding and 
monitoring how organisms respond to human-driven climate change is 
therefore a major priority for the conservation of biodiversity in a rapidly 
changing environment. Recent developments in genomic, transcriptomic 
and epigenomic technologies are enabling unprecedented insights 
into the evolutionary processes and molecular bases of adaptation. 
This Review summarizes methods that apply and integrate omics tools 
to experimentally investigate, monitor and predict how species and 
communities in the wild cope with global climate change, which is by 
genetically adapting to new environmental conditions, through range 
shifts or through phenotypic plasticity. We identify advantages and 
limitations of each method and discuss future research avenues that 
would improve our understanding of species’ evolutionary responses 
to global climate change, highlighting the need for holistic, multi-omics 
approaches to ecosystem monitoring during global climate change.
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evolutionary responses to GCC23 or the technical details of the meth-
ods described24–26, we refer readers to other reviews. Our aim is to 
summarize and highlight the broad range of applications of diverse 
methodologies over the past decade in the context of GCC, using key 
examples. We present advantages and limitations associated with the 
reviewed methods (Table 1), as well as future perspectives for improving 
predictions of the multifaceted responses to GCC across systems.

Identifying adaptive genetic variation
Characterization of spatial patterns of adaptive genetic variation in wild 
populations is an important first step towards understanding the poten-
tial for adaptation to GCC. Spatially varying selection can drive local 
adaptation and maintain standing genetic variation, facilitating adaptive 
responses to environmental change. For example, one study identified 
physiological differences and genomic divergence despite high gene 
flow between Acropora tenuis populations occupying different habi-
tats in an isolated coral reef system in Western Australia27. This finding 
supports a role for selection driven by spatially varying environmental 
conditions to maintain genetic variation that confers resilience to heat 
stress in habitats experiencing more extreme conditions.

Population genomic methods, such as genome scans for sig-
nals of divergent selection, are now extensively used to identify 
candidate adaptive genomic variants, typically SNPs. For example, 
differentiation-based scans detect candidate adaptive loci on the basis 
of signals of locus-specific genetic differentiation between populations 
that deviate from expectations under a neutral model (for example, FST 
outliers) and are thus presumably subject to selection28. This approach 
has been used to identify highly differentiated SNPs across geneti-
cally distinct populations that were subsequently linked with biocli-
matic variables such as temperature and salinity and functional genes 
potentially involved in thermal tolerance or salinity stress response 
mechanisms29. Other genome scan approaches that directly incor-
porate environmental variables, known as genotype–environment 
associations (GEAs)28,30,31, detect candidate adaptive loci on the basis of 
direct statistical associations between allele frequencies and environ-
mental variables and can identify key climatic factors that are driving 
local adaptation across heterogeneous landscapes32–35. Several GEA 
methods exist and their performance under various scenarios has 
been reviewed elsewhere36–38. Most conventional GEA methods use 
linear models to test genetic–environment relationships30, although 
methods such as regression tree-based models can capture nonlinear 
relationships and have been used to detect genomic variants associated 
with climate adaptation39,40. Multivariate methods, especially redun-
dancy analysis (RDA), are commonly used to identify GEAs given their 
ability to model multi-dimensional relationships and detect weak poly-
genic signatures of selection compared with univariate methods37,41. 
Window-based approaches have also been applied to characterize the 
genetic basis of local adaptation and have shown promising levels of 
performance when compared with other GEA methods42.

Understanding spatial patterns of climate-associated genetic 
diversity can provide insight into the adaptive potential of populations43 
and is a common focus of landscape genomics studies. Detection of 
local adaptation to environmental conditions using GEAs combined 
with assessments of dispersal capacity estimated with landscape 
resistance suggests that the potential for evolutionary responses to 
changing conditions may be limited in some populations, as docu-
mented in the streamside salamander Ambystoma barbouri44. When 
coupled with an ecological niche model (ENM), the spatial distribution 
of climate-adapted loci can be related to range-wide environmental 

We wish to dedicate this review to the memory of Louis Bernatchez, 
who passed away shortly after its acceptance. We are all deeply 
grateful to Louis, not only for conceiving this piece of work, but most 
importantly for his outstanding contributions to the field, invaluable 
mentorship, and boundless generosity and compassion.

Introduction
The impact of global climate change (GCC) is affecting all forms of life 
across all biomes, with potentially detrimental consequences to the 
persistence of species and ecosystem functioning1–6. Shifts in environ-
mental conditions, such as warming temperatures and ocean acidifi-
cation, have direct effects on organisms by challenging physiological 
limits7–9 or altering phenology10,11. Indirect effects of climate change can 
also threaten biodiversity by increasing the spread of novel pathogens 
and severity of disease outbreaks12, or by introducing new species that 
alter predation and competition dynamics in communities13.

The rapid pace of GCC may preclude adequate responses in many 
populations, thus increasing the rate of decline and extinction14. Extinc-
tion can be avoided by species shifting their geographical distribution 
to more favourable habitats, acclimatizing to stressful conditions 
through phenotypic plasticity — the ability of one genotype to express 
different phenotypes in different environments — or adapting through 
genetic change (Fig. 1). However, it is challenging to understand when 
eco-evolutionary responses will occur and to differentiate between 
the aforementioned responses to identify potential evolutionary ‘win-
ners’ and ‘losers’, such as species with low adaptive capacity6,15–17. Many 
studies have attributed phenotypic changes in natural populations to 
GCC-induced phenotypic plasticity3,5,18. However, plasticity and genetic 
effects are difficult to disentangle as both contribute to phenotype, 
and plastic mechanisms are often partially genetically controlled19–21. 
Genomic data need to be supplemented with experiments in controlled 
conditions to document evolutionary change over time and by integrat-
ing other omics approaches, such as transcriptomics and epigenomics, 
to adequately infer the genetic versus plastic basis of responses to 
GCC3. Monitoring temporal genomic and phenotypic changes dras-
tically improves our understanding of how GCC affects organisms; 
although this approach presents logistical issues for many species, 
it is becoming increasingly feasible with recent omics technologies.

Next-generation sequencing methods have transformed the field 
of population and functional genomics over the past decade by ena-
bling the screening of whole-genome variation within and between 
species across space and time22. This makes it possible to characterize 
the genome-wide architecture that underlies adaptive traits and the 
genome-wide response to selection induced by natural or anthropo-
genic factors, including GCC6. New analytical methods can forecast 
range shifts under predicted climate change for individuals adapted 
to different climatic conditions and determine the potential for rescue 
effects to support population persistence. Moreover, genome-wide 
plastic responses to new environ mental conditions through changes in 
gene expression and epigenetic modifications can be investigated using 
molecular approaches, in both controlled conditions and natural envi-
ronments. Recent developments in meta genomics and metabarcoding 
also represent powerful methods to monitor community composition 
of all species under GCC. Together, this array of omics technologies 
presents a powerful toolbox to understand the effects of GCC on species 
and communities.

Here, we review the application of methods used in recent years to 
infer or predict organismal responses to GCC, in both natural and exper-
imental conditions (Table 1). For a comprehensive review of potential 



Nature Reviews Genetics

Review article

suitability, thereby identifying regions that may be sources of adap-
tive genetic variation to unfavourable or changing conditions at niche 
limits45 (Fig. 2). Accordingly, studies using GEAs provide essential 

information for implementing strategies aimed at protecting spe-
cies that may be vulnerable to effects of GCC46, spatial planning that 
incorporates adaptive genetic variation in delineating conservation 

Phenotypic plasticity

Molecular plasticity
• Gene expression
• Epigenetics
• Chromatin
 accessibility

Climate
change

Acclimation through plasticity
or potential mortality

Range shifts and dispersal

Species distribution
• eDNA metabarcoding
• Ecological niche modelling
• Metagenomics

Community composition
• eDNA metabarcoding
• Metagenomics

Species
relocation

Healthy environment

Poor environment

Poor environment

Environmental
changes

Community composition
changes

Genetic adaptation

Spatially varying selection
• Genotype–environment associations
• Common garden experiments
• Genomic o�set

Temporally varying selection
• Genomic o�set
• Evolve and resequence experiments
• Resurrection ecology

Environment 1

Environment 2

Environment 3

Genetic change

Time

Selective mortality

Genetic change

Climate change

Lack of or
inappropriate
response

Extirpation or extinction
• Paleogenomics
• Ancient DNA

1 2

3

Fig. 1 | A conceptual framework to assess the effects of global climate 
change using omics approaches. Global climate change (GCC) poses a 
significant threat to species, although they can adapt genetically through 
spatially or temporally varying selection (response 1), cope through range 
shifts and dispersal when possible to avoid extirpation (response 2) or 
acclimate to GCC through phenotypic plasticity (response 3). Various methods 

that integrate genomic and/or epigenomic tools (listed as bullet points) can be 
used in both natural environments and experimental laboratory conditions to 
assess how species are responding to GCC (Table 1). Lack of or inappropriate 
responses can result in extirpation or extinction (red box), which can also 
inform on the historical effects of GCC on species and communities. eDNA, 
environmental DNA.



Nature Reviews Genetics

Review article

Table 1 | Main approaches to monitor species responses to GCC at the genomic or epigenomic level

Approach Context Description Advantages Limitations

Identifying adaptive genetic variation

Differentiation-based 
genome scans

Identify genomic 
regions subject to 
selection

Detect locus-specific deviations in 
population genetic differentiation 
compared with expectations under 
a neutral demographic model 
(e.g. FST outliers)

Generally noninvasive sampling 
in natural populations
Does not require genomic 
resources (e.g. reference 
genome, linkage map)

Underlying demographic models 
may be overly simplified
Confounding effects of 
demographic history and neutral 
population structure can lead to 
false-positive signals of selection
Do not directly infer the selective 
factors that act on highly 
differentiated loci

Genotype–
environment 
associations

Identify genome- 
wide loci that are 
likely involved in 
environmental 
adaptation and identify 
key environmental 
drivers of local 
adaptation

Univariate models to test 
associations between individual 
loci and environmental predictors 
(e.g. latent factor mixed models)
Multivariate models to test 
associations between many loci 
and multiple environmental 
predictors simultaneously 
(e.g. redundancy analysis)

Generally noninvasive sampling 
in natural populations
Does not require genomic 
resources (e.g. reference 
genome, linkage map)
Directly incorporates 
environmental variables to infer 
environment-driven selection 
pressures on differentiated loci

Confounding patterns of selective 
gradients and neutral population 
structure can lead to false-positive 
signals of selection
Rely on clinal/monotonic 
relationships between allele 
frequencies and the environment
Inferences are correlative; may be 
difficult to experimentally validate 
candidate loci

Genomic vulnerability to GCC

Vulnerability prediction Predict adaptive 
potential of 
populations to future 
environmental 
conditions and 
identifies vulnerable/
donor populations

Generalization of the genome–
environment relationship
Measurement of the shift in 
genomic composition between 
current and future conditions
Validation of the prediction

Forecast on climatic conditions 
available worldwide
Genotype–phenotype 
associations can also be 
investigated for predictive 
responses to GCC
Convenient and fast 
approach for non-model or 
declining species to inform 
decision-making

Populations are assumed to 
be currently adapted to their 
environment, and genotype–
environment associations are not 
static through time
Bias due to missing data, gene flow, 
genomic load, polygenic effects 
and correlative predictors
Sampling a sufficient number of 
representative populations across 
an environment gradient or contrast

Examining temporal evolutionary changes

Evolve and resequence Study evolutionary 
response to selection 
at the genome 
level across many 
generations

Combine whole-genome 
sequencing (including using 
Pool-seq) with experimental 
protocols comparing different 
environmental conditions in 
replicated and temporally identical 
conditions

Documents the specificity 
and dynamics (e.g. variation in 
types of mutation) of genome 
evolution across hundreds, even 
thousands, of generations in 
totally controlled conditions

Unclear whether results from 
laboratory experiments can be 
directly translated to natural 
populations
Limited to microbial organisms 
or species with very short 
generation times
More complex organisms can only 
be reared for a very few generations

Resurrection ecology 
and genomics

Document 
evolutionary change 
between ancestral 
and contemporary 
populations

Collect samples from dormant 
propagule banks in aquatic 
sediments, soil or ice
Hatch and rear in controlled 
conditions
Measure phenotypes and obtain 
genomic information from 
whole-genome sequencing, 
RADseq, candidate genes or gene 
expression analysis

Align local population genomic 
and phenotypic evolution 
with temporal environmental 
changes

May require extensive experimental 
set-up, which comes with many 
technical complications
Limited to species that produce 
dormant propagules

Evolutionary change 
and time series

Directly measure allele 
frequency change over 
time

Sample natural populations 
at multiple time points using 
historical samples (e.g. trees 
of different ages, herbarium 
specimens)
Genotype individuals with a 
method suitable to the DNA quality 
(whole-genome sequencing when 
possible or selected loci)

Applicable to a broad diversity 
of species
Does not require logistically 
complicated experimental 
settings

Link between genomic and 
environmental variation 
correlative only
Confounding historical factors 
(e.g. bottlenecks and admixture) 
may cause biases
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units or prioritizing areas for protection47,48, and informing actions 
such as assisted gene flow to enhance the adaptive potential of small 
populations49,50.

Signatures of selection may be confounded by neutral popula-
tion structure and spatial autocorrelation with environmental fac-
tors, leading to incorrect inference of local adaptation from GEAs 
(and differentiation-based genome scans)28. Many GEA approaches 
incorporate corrections to account for the effects of demography 
and geography28. RDA can also be adapted to include conditioning 
variables using a partial RDA (pRDA), enabling variance partitioning 
between different sets of predictors (for example, environmental, 
spatial or demographic) and correcting for confounded effects41. For 
example, after incorporating spatial variables representing dendritic 
riverine network structure, 4% of genetic variation in the Austral-
ian rainbowfish (Melanotaenia fluviatilis) populations was attrib-
uted to the environment, and >700 loci exhibited associations with 

temperature, precipitation and stream flow34. Although this approach 
reduces the number of false-positive detections, it can also exclude 
true positives when environmental gradients coincide with spatial or 
demographic processes37,51.

Although GEAs are powerful and convenient approaches for dis-
covering climate-associated genetic variation, there are some recog-
nized limitations. The development of GEA methods relies on the basic 
assumption that adaptive alleles will form frequency clines associated 
with the selective environment. However, using a range of simulations, 
a recent study showed that nonclinal allele frequency patterns can 
evolve despite phenotypic clines associated with climatic gradients, 
which may lead to incorrect inference of adaptive SNPs based on GEAs51. 
Moreover, causal variants, especially those of small effect, may not be 
readily detectable52, and the predictability of the genomic selection 
response for polygenic traits depends on an understanding of the 
underlying adaptive architecture (including linkage disequilibrium, 

Approach Context Description Advantages Limitations

Molecular phenotypic plasticity in GCC

Transcriptomics Assess plastic 
responses of organisms

Differential expression analysis
Alternative splicing analysis 
(e.g. differential exon usage)
eQTL analysis
Methyl-eQTL analysis

Provides a functional genomic 
basis for plasticity

Requires high-quality RNA
Degradation
Results may differ based on tissue 
choice
Effects on phenotype are unclear

Epigenomics Assess mechanisms 
underlying plastic 
responses of organisms

DNA methylation sequencing
Differential methylation analysis
Small or non-coding RNA 
sequencing/expression analysis
Histone modification quantification 
(e.g. ChIP–seq)
Methyl-QTL analysis
Methyl-eQTL analysis
EWAS
Chromatin accessibility sequencing 
(ATAC-seq)

Provides a heritable mechanistic 
basis for plasticity

Partially controlled by genetic 
variation
Results may differ based on 
tissue choice
Slow loss or alteration of 
methylation and histone 
modifications in stored samples
Rapid degradation of small RNA
Effects on phenotype unclear

eDNA community monitoring and GCC

eDNA Infer current species 
presence or absence 
and sometimes relative 
abundance
Assess current 
biodiversity depending 
on local environmental 
conditions

Metabarcoding
Metagenomics

Noninvasive
Easy sampling
Targets all taxonomic levels

Degradation
Risk of contamination
Marker biases
Sequencing errors
Limited understanding of the 
molecule ecology (e.g. rates of DNA 
production and degradation)
No information on demographic or 
life-history parameters

aDNA Reconstruct 
community responses 
to past environmental 
events

Metabarcoding
Metagenomics

Greater taxonomic resolution, 
spatial and temporal precision 
than other palaeoecological 
methods (e.g. pollen records)

Same as eDNA
Increased risks of contamination 
(false positives)
DNA modification and strand 
damage

eRNA Assess the plastic 
response of 
communities to GCC

Metabarcoding
Metagenomics

Same advantages as eDNA
Degrades more rapidly than 
eDNA, therefore represents 
a more accurate signal of 
‘real-time’ biodiversity

Same as eDNA, with increased risks 
of degradation

aDNA, ancient DNA; ATAC-seq, assay for transposase-accessible chromatin with high-throughput sequencing; ChIP–seq, chromatin immunoprecipitation followed by sequencing; eDNA, 
environmental DNA; eQTLs, expression quantitative trait loci; eRNA, environmental RNA; EWAS, epigenome-wide association studies; GCC, global climate change; RADseq, restriction 
site-associated DNA sequencing.

Table 1 (continued) | Main approaches to monitor species responses to GCC at the genomic or epigenomic level
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epistasis and recombination rate variation)53–55. Despite the limita-
tions of GEA, an extension to the RDA framework has been shown to 
accurately predict multivariate quantitative traits from landscape 
genomic data across a range of demographic and selection scenarios 
and complex genomic architectures51. Finally, additional evidence is 
needed to corroborate genetic–environment associations and their 
involvement in climate adaptation, including experimental approaches 
that provide evidence of fitness differences associated with candidate 
variants56,57. For example, in common garden experiments, individuals 
from different environments are reared in a common environment to 

elucidate the genetic and environmental components that underlie 
phenotypic differences. Alternatively, reciprocal transplants can be 
performed, whereby individuals originating from each of two (or more) 
environments are introduced into the other environment to character-
ize local adaptation based on fitness differences between individuals 
reared in home versus away environments, or between resident and 
immigrant individuals in a given environment. Although this type of 
validation is not always feasible, the outcomes of many studies support 
the broader application of GEAs for understanding population-level 
patterns of climate adaptation31,49.
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Fig. 2 | Using genotype–environment associations to identify candidate SNPs 
and potential sources of adaptive variation. a, Aguirre-Liguori et al. sampled 
populations of teosinte (Zea mays mexicana) along an environmental gradient 
in southern Mexico45. b, Environmental layers and species occurrence data were 
combined to predict the species’ niche distribution using an ecological niche 
model. c, Candidate SNPs were detected by performing genome scans of genotype–
environment associations (GEAs). d, Using the predicted niche distribution, the 
authors defined the niche centroid based on the mean value of each environmental 
axis and calculated an environmental distance (d) between each population and the 

niche centroid; populations with a higher d inhabit more unsuitable (niche edge) 
habitats. e, For each candidate SNP, the authors fitted an environmental cline and 
identified populations in which the SNP is likely to be adaptive (filled circles; α) 
versus populations in which the SNP evolves neutrally (open circles). f, The authors 
detected a significant positive correlation between the number of adaptive SNPs 
per population and the distance of each population from the niche centroid (d). 
This finding suggests that populations that occur at niche limits may be important 
sources of adaptive variation for populations experiencing environmental change. 
Parts c, e and f adapted with permission from ref. 45, Wiley.
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Genomic vulnerability to GCC
Genomic offset (also known as genetic offset58 or genomic vulner-
ability59) combines genomic and environmental data from different 
time points and/or locations to assess the degree of possible maladap-
tation to new environmental conditions. It is an increasingly popular 
approach for predicting how populations or species will respond to 
GCC and was inspired by genomic selection methods that aim to predict 
phenotype based on genotype. This approach is classically a two-step 
process: first, GEA approaches identify putatively adaptive variation; 
and second, spatial and/or temporal extrapolation typically relates 
current patterns of adaptive genomic composition of populations to 
climate. The predicted optimal population genomic compositions 
are projected across a species’ range (space), onto future climatic 

conditions (time), or both, to estimate the magnitude of genetic shift 
(in allele or genotype frequencies) required by populations to maintain 
the current fitness status quo under different climates using a model-
ling approach similar to ENMs (Fig. 3). Several models have been devel-
oped to estimate genomic offset statistics (reviewed elsewhere5,60,61). 
Most studies that aim to predict future genomic (mal)adaptation 
of populations have used the Gradient Forest (GF) method58,59,62–65. 
GF was originally developed to model spatial variation in community 
composition and subsequently used on SNP data to model turnover 
in allele frequencies and estimate the genetic offset that climate 
change would induce for balsam poplar (Populus balsamifera) popu-
lations across North America58. Generalized dissimilarity modelling 
(GDM)66 is the second community-level modelling method adapted 

Current

Future

g  Genomic load

Populations

Per 
population

Genomic oset

G
en

om
ic

 lo
ad

Distance from the niche centroid

d  Dispersal potential e  Gene flow

Mmaladaptive

Madaptive

Time of 
population
divergence 

Ancestral population 

Contemporary 
climate occupancy

Future climate 
occupancy

a  Turnover of allele frequency across
the temperature gradient 

b  Species distribution model

Ad
ap

tiv
e 

ge
ne

tic
co

m
po

ne
nt

 tu
rn

ov
er

Mean temperature

f

Cold southern cluster
Warm northern cluster

Ad
ap

tiv
e 

ge
ne

tic
co

m
po

ne
nt

 tu
rn

ov
er

 c  Genomic o�set

G
en

om
ic

 o
s

et

Genomic
oset

Climate 
dierence

Mean temperature South North

South

South

North

North

N
um

be
rs

 o
f a

re
as

th
at

 c
an

 b
e 

co
lo

ni
ze

d

G
en

om
ic

 lo
ad

G
en

om
ic

 lo
ad

h  Populations on the expanding
range accumulate deleterious 
mutations and are more vulnerable

Fig. 3 | Integrated approach to synthesize levels of risk of teosinte to GCC, 
based on ecological niche models, landscape resistance, local agentic 
adaptation, genomic offset, gene flow and genomic load. a, Based on the Zea 
mays mexicana SNP data set (Fig. 2 and ref. 45), Aguirre-Liguori et al.75,76 first used 
the current adaptive genetic turnover identified between two geographically 
and genetically distinct clusters and significantly associated with temperature. 
b, The authors then projected the geographical range of the two genetic 
clusters in the present and future (2070) conditions using Maxent228 and the 
WorldClim database229. c, A Gradient Forest model was used to assess genomic 
offset in each sampled population. The estimated genomic offset combined 
across all populations within the colder southern cluster (blue) and warmer 
northern cluster (red) indicated that the predicted genomic offset is higher 
on average for southern populations. d, Maps of potential migration using the 
present and future distribution models for putative warm-adapted alleles were 
constructed to determine landscape resistance as a proxy of limitations to 
successful migration using circuit theory230. Comparison between populations 
suggested that some populations have few dispersal routes. e, Adaptive and 
maladaptive gene flow between populations from the two clusters were inferred 

using coalescent simulations231 to assess whether the population receives an 
influx of warmer-adapted alleles from northern populations or is swamped with 
maladaptive alleles from the south. f, The presence of genomic load, that is, 
genetic variants putatively reducing the fitness of a population relative to a local 
fitness optimum, was investigated via a measure that compared the proportion 
and population frequency of non-synonymous SNPs with those of synonymous 
SNPs. g, The findings indicate that southern populations have higher estimated 
loads than northern ones. h, Moreover, for both clusters there is a positive and 
significant trend between genomic load and distance from the niche centroid 
(d in Fig. 2). This effect is more pronounced for northern populations, suggesting 
that they are particularly likely to be subjected to evolutionary forces that 
produce genetic load. With this integrated framework, the authors highlighted 
the importance of taking into consideration the full ‘give and take’ between 
adaptation and potentially transgressing forces such as gene flow, dispersal 
and load to make accurate predictions of population vulnerability under 
global climate change (GCC) (particularly about the fate of small populations 
at the edge of a species’ geographical range). Parts a, c–h adapted from ref. 75, 
Springer Nature Limited.
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to extrapolate genetic–environment relationships and can be used to  
predict genetic differentiation (FST) between contemporary and future 
populations as a function of the environmental distance between 
current and future climatic conditions63,67. RDA has also been used 
to produce spatial extrapolations of intraspecific adaptive genetic 
variation68, predict adaptive genotypes for reforestation sites69 and 
spatially predict genomic offset associated with climate change41. 
Risk of nonadaptedness (RONA)70 uses a linear regression (at a single 
locus level) in previously identified, putatively adaptive loci without 
correction for population structure to estimate the expected allele 
frequency required under the new environ mental conditions. Pinas-
Martins et al.71 expanded RONA by using a weighted average R2 of the 
regression to investigate the adaptation potential of cork oak to survive 
predicted climate change. The spatial areas of genotype probability 
(SPAG) method uses multivariate logistic regressions to compare the 
adaptive landscape under current and future climatic conditions72. 
Recently, the ‘genetic gap’ was proposed as a geometric measure of 
genomic offset that unifies previously proposed genomic offset statis-
tics in a common framework73. Considering a duality between genetic 
and environmental space, a theoretical framework was developed 
that linked genomic offset statistics to a non-Euclidean geometry of 
the ecological niche.

The proposed measures of genomic offset are empirically vali-
dated but also have well-identified limitations61,74,75 (Table 1). Such 
analyses are stronger when incorporated with other approaches. 
Aguirre-Liguori et al.75,76 combined genetic offset analysis with other 
approaches in a study on synthesized risk assessments of teosinte (Zea 
mays parviglumis) populations experiencing GCC (Fig. 3). In a study 
of yellow warbler (Setophaga petechia), a combination of genomic 
offset scores and demographic population trends across the species’ 
breeding range showed that populations that require the greatest 
shifts in allele frequencies to keep pace with future climate change have 
experienced the largest population declines, suggesting that failure 
to adapt may already be having negative effects59. Across an eleva-
tional gradient in the Australian Wet Tropics, Brauer et al.77 showed 
that hybrid populations between a widespread generalist and several 
narrow-range endemic species exhibited reduced genomic vulnerabil-
ity to projected climates compared with pure narrow endemic species. 
This study goes further than previous studies by both considering 
genomic vulnerability and providing empirical evidence for gene flow 
mitigating maladaptation. The combination of genomic offset scores 
and phenotypic data (flowering time) of the pearl millet (Pennisetum 
glaucum), a nutritious staple cereal cultivated in arid and low-fertility 
soils in sub-Saharan Africa, predicts that the most vulnerable areas will 
benefit from using landraces that already grow in equivalent climate 
conditions today78.

Investigating temporal evolutionary change
Evolve and resequence experiments
Experimental evolution allows the direct study of evolution through 
controlled manipulations of organisms over many generations and 
represents the most rigorous approach for understanding trait evolu-
tion due to different environmental conditions79–81. As many organ-
isms have prohibitively long generation times, most studies focus on 
species that reproduce rapidly, such as microorganisms. Pioneering 
experimental evolution studies using Escherichia coli as a model sys-
tem studied evolutionary forces and their impact on trait evolution 
under controlled conditions over 75,000 generations82–87. Evolve 
and resequence  (E&R) provides a powerful means to track 

molecular evolution in ‘real time’ and dissect the adaptive architec-
ture of selected traits at the highest genomic level of resolution88–90 
(Fig. 4). Whole-genome sequencing is becoming more affordable 
and prevalent in E&R experiments, although many experiments on 
microbial organisms or small multicellular organisms with very short 
generation times still use Pool-seq to sequence pools of many individu-
als, which is cost-effective and yields accurate genome-wide allele 
frequency estimates90,91. Numerous E&R experiments, mostly using 
Drosophila, have investigated evolutionary issues pertaining to GCC, 
including the role of standing genetic variation versus de novo muta-
tions in adaptation92, the synergistic effects of different stressors and 
population ancestry93,94 and the role of genetic adaptation versus 
plasticity in response to high temperatures95,96. Although E&R studies 
are typically conducted over many generations, several studies have 
shown that adaptive genetic variation can be identified with a single 
or a few generations of selection97–100.

Despite their many benefits, it is unclear how E&R results relate 
to processes of adaptation in nature79. This was recently investigated 
by comparing patterns of gene expression divergence between popu-
lations of Drosophila melanogaster adapted for 80 laboratory gen-
erations to two distinct temperature regimes with those identified 
by contrasting natural populations across two different latitudinal 
clines101. The authors found that 203 genes in seven co-expression 
modules evolved temperature-specific expression changes in the 
laboratory populations. Moreover, their results revealed a positive 
correlation in temperature-induced expression between laboratory 
and natural populations from the two clines. They concluded that 
well-designed E&R experiments can inform how populations respond 
to selection in natural environments, although another recent study 
on the harlequin fly (Chironomus riparius) concluded that results from 
E&R experiments could not provide insights into thermal adaptation 
potential in natural populations102.

Resurrection ecology and genomics
Resurrection ecology provides information on the phenotypic varia-
tion and fitness of past organisms by resurrecting dormant life stages, 
for example, seeds, eggs, cysts or spores that accumulate in lacustrine 
and marine sediments, soil or ice, allowing insight and direct study of 
organisms from before our lifetime79. Resurrection ecology is a pow-
erful approach79,103 that predates the ‘genomic era’104–106, yet few stud-
ies on the impact of GCC on natural populations have incorporated 
genomics into resurrection ecology studies107 despite tremendous 
advantages108–113. Temporally stratified propagule banks can be accu-
rately dated such that population genomic and phenotypic evolution 
can be aligned with temporal environmental changes103. Resurrec-
tion ecology combined with genomics can also assess the role of new 
mutations versus standing genetic variation in adaptive phenotypic 
responses to environmental changes114–116.

The best examples of combination of resurrection ecology with 
genomics come from gene expression studies, including a key study 
on the aquatic crustacean Daphnia magna117 (Fig. 5). Another study in 
the common mustard Brassica rapa examined evolutionary changes 
in gene expression in seeds from two populations over 18 years during 
which precipitation fluctuated dramatically118. By comparing gene 
expression of ancestors and descendants of these resurrected popu-
lations grown under common conditions, they found that hundreds 
of genes associated with drought stress and flowering time showed 
transcriptional differences between ancestors and descendants of 
the two populations. This study, along with others119,120, indicates that 
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evolutionary changes in gene regulation may provide rapid adaptive 
responses to contemporary shifts in climatic conditions.

Evolutionary change and time series
Temporal evolutionary changes can also be investigated at the genome 
level from time series data5,121,122. This involves sampling natural 

populations, using historical samples123,124 to measure allele frequency 
at various times, correlate genotypic and environmental variation125 and 
thus improve inference of selection dynamics126,127. A study in Atlantic 
cod (Gadus morhua) analysed DNA from archived otoliths to search for 
signatures of divergent selection over a 78-year climatically variable 
period128. The genetic composition of some populations was temporally 
stable, yet complete population replacement was evident at others, 
and increased temporal changes at several loci suggested that adapta-
tion to environmental change had occurred. These findings illustrate 
the power of spatiotemporal population genomics to inform future 
conservation efforts.

Molecular phenotypic plasticity in GCC
Phenotypic plasticity is often the main mechanism that allows pop-
ulations to cope with GCC3,129, with transcriptomics, epigenomics 
and proteomics being increasingly used to investigate functional 
plastic responses. Plasticity studies are helpful to understand the 
range of possible phenotypic responses to environmental change 
that can influence fitness within a single generation without differen-
tial mortality owing to selection. Gene expression23,130,131, epigenetic 
mechanisms19,132,133 and the proteome134 respond to temperature and 
environmental changes. Transcription often underlies plastic prot-
eomic and phenotypic changes, whereas epigenetic mechanisms herit-
ably affect transcriptional states in response to the environment135,136. 
Plastic responses can preclude or delay genetic adaptation if they lead 
to environmental acclimation137,138. They can also increase pheno-
typic variation and evolutionary potential129,137,139, which could prove 
crucial for genetically impoverished populations that experience 
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Fig. 4 | Experimental evolution: evolve and resequence. Deatherage et al.232 
investigated the specificity of genome evolution in Escherichia coli at various 
temperatures. a, Thirty populations were evolved for 2,000 generations, 
with six replicates in each of five different thermal regimes. The genomes 
were sequenced at one end point from each population and compared with 
the ancestral population. The authors used the breseq program233 to identify 
mutations in evolved genomes. b, Summary of the 159 derived mutations 
observed in the 30 sequenced genomes by the type of genetic change. Across 
all populations, 159 de novo mutations were found. Most mutations (57%) were 
single base substitutions, 87% of which were  non-synonymous substitutions or 
nonsense substitutions, which provided a strong signal of adaptive evolution. The 
other 43% of the mutations in the temperature-evolution experiment (TEE) lines 
comprised small insertions or deletions (indels), large deletions, amplifications 
and rearrangements. Populations that evolved under the same thermal regime 
exhibited four times more overlap (17% versus 4%) in which genes were mutated 
compared with those evolved at different temperatures. c, Genes (rows) affected 
by at least two qualifying mutations in the 30 TEE clones (columns, organized by 
temperature regime and populations –1, +1, –2, +2, –3 or +3). Results revealed 
a clear signal of genomic specificity in how populations adapted to different 
temperature regimes whereby mutations converged on a distinctive set of 
genes with signature mutations in each treatment. The figure presents the genes 
containing at least two qualifying mutations. Five ‘signature’ mutations, shown 
as coloured squares, are significantly associated with one or two treatments. 
One of the populations that was evolved at 37 °C for another 18,000 generations 
accumulated mutations in signature genes that were strongly associated with 
adaptation to the other temperature regimes. This landmark study demonstrates 
that the genomic signature of adaptation is highly specific, although populations 
evolving under the different regimes might eventually show more genetic 
parallelism than divergence234. Parts a–c adapted with permission from 
ref. 232, PNAS.
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GCC137, although lack of plasticity or maladaptive plasticity could 
negatively affect fitness140,141. Organisms can evolve or lose the capacity 
for transcriptional and epigenetic plasticity, as observed in studies of 
threespine stickleback (Gasterosteus aculeatus) colonizing freshwater 
environments142,143 and various populations at range edges144. Plastic 
and genetic changes can also act synergistically in response to GCC, 

with species acclimatizing through plastic changes while genetic 
adaptation ‘catches up’138.

Molecular plasticity studies are shifting towards whole-genome, 
epigenome, transcriptome and proteome methods owing to decreas-
ing costs. Many studies have assessed transcriptional responses to 
temperature9,145, with recent studies assessing alternative splicing in 
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Fig. 5 | Combining resurrection ecology and genomics. Jansen et al.235 used a 
candidate gene approach to document evolutionary response of gene expression 
in a resurrected population of Daphnia magna that experienced changes in 
temperature over the past 40 years and from contemporary (experimental) 
populations differing in thermal tolerance. a, Sediments from Felbrigg Hall 
Lake, Norfolk, UK, were sampled and dated, and dormant eggs were hatched and 
cultured from a colder and a warmer period. b, The upper 2 cm of the sediment 
from mesocosms exposed to either ambient or ambient + 4 °C temperature 
treatment was sampled for resting eggs, and hatched D. magna were used for 
candidate gene analysis. c, Reaction norms for differential expression were 
measured at the candidate genes between heat treatment and control. Authors 

documented evolutionary changes in gene expression between warm and 
cold-adapted populations and assessed evolutionary response to temperature 
changes. They used model-averaged effect sizes to quantify the impact of each 
term and applied a false coverage ratio correction to correct for multiple testing 
before assessing the significance of each term. Most of the tested genes (57%, 
a subset of 12 genes illustrated here) in the contemporary populations showed a 
plastic response to heat treatment compared with only 23% in the resurrected 
population. These results thus indicated that most genes apparently lost plasticity 
of expression in the face of evolutionary (thermal) constraints in the natural 
(resurrected) population. Their study also identified candidate genes likely linked 
to thermal adaptation. Figure adapted with permission from ref. 235, Wiley.
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thermal acclimation146–149, which can diversify an organism’s transcrip-
tome. Epigenetic mechanisms provide a mechanistic basis for tran-
scriptional responses to environmental changes associated with GCC. 
There is a strong focus on differential DNA methylation analysis asso-
ciated with thermal regime150–152, although histone modifications and 
non-coding RNA expression147,153–155 also respond to GCC. Methods such 
as assay for transposase-accessible chromatin with high-throughput 
sequencing (ATAC-seq) can directly assess chromatin accessibility, as 
shown through chromatin conformation and transcriptional changes 
due to temperature in symbiotic sea anemone (Exaiptasia pallida)156. 
Proteomics can also be used to assess functional protein responses 
and resilience to GCC134, which are sometimes driven by transcrip-
tional and epigenomic variation. Although plastic mechanisms clearly 
respond to temperature and GCC, the integration of both genomic and 
transcriptomic or epigenomic data is imperative to disentangle genetic 
from plastic phenotypic effects.

Plasticity and genetics both affect phenotype, although the rela-
tive importance of each in the resulting phenotype is unclear. This is 
further complicated by SNP variation often exerting some control over 
transcription (for example, expression quantitative trait loci (eQTLs)) 
and epigenetic state (for example, methylQTLs). For example, sea-
sonal and latitudinal allele frequency changes are associated with 
thermal response at previously identified eQTLs20 in Drosophila. Both 
latitudinal and seasonal eQTLs were associated with chromosomal inver-
sion breakpoints21,157, but seasonal eQTLs were not consistent between 
sites, suggesting that sites may differ in the selective pressures imposed 
by seasonal changes21. Epigenetic variation and transcription can be 
linked through methyl-eQTLs, site-specific methylation levels that are 
maximally correlated with gene expression, which have mostly been used 
in medical studies158,159 but could be implemented in ecological studies.

The simultaneous assessment of multi-omic data is needed to 
disentangle the relative importance of genetics versus plasticity for 
phenotype and to determine the extent of genetic constraint over 
plasticity. First, studies should assess the extent of genetic control 
over transcriptional and epigenetic variation, which is present in some 
systems (for example, Micrarchus stick insects)160 but not others (for 
example, branching staghorn coral Acropora cervicornis)161. Next, we 
need to understand how genetic control over plastic mechanisms 
changes depending on environmental context. For instance, combined 
transcriptome, methylome and phenotype data revealed genotype by 
environment effects on growth potential in transgenic Coho salmon 
(Oncorhynchus kisutch)162. We should further determine under what 
circumstances organisms evolve differential capacity for plasticity 
(for example, the aforementioned stickleback studies)142,143 and when 
genetic variation becomes coupled or uncoupled from transcrip-
tional or epigenomic variation (for example, using whole-genome DNA 
methylation data and predictive modelling in Arabidopsis thaliana)163.

Finally, multi-omic data must be related to phenotype to reinforce 
the importance of plasticity in GCC responses. Plasticity studies to 
measure fitness-related outcomes cement plasticity as an important 
evolutionary response to GCC9,164 (Fig. 6). Epigenome-wide association 
studies (EWAS) could be used to link epigenetic and phenotypic 
changes; although EWAS is primarily used in human disease studies, 
it was recently used to link methylation changes with temperature fluc-
tuations in humans165 and could thus be used to identify loci involved 
in thermal response and tolerance. A genomic reaction norm could also 
be incorporated in molecular plasticity studies to understand the com-
bined effects of environment, genotype, phenotype and demographic 
characteristics166. The environment is an important consideration in 

these studies, as phenotype cannot be generalized across multiple 
environments. These issues can be addressed using common gar-
den experiments or by assessing phenotypic plasticity across many 
environmental contexts.

eDNA community monitoring and GCC
The analysis of environmental DNA (eDNA) enables the identification 
of organisms on the basis of their DNA released into the environment 
(water, soil or air), for example, through skin cells or metabolic waste. 
This noninvasive genetic approach can predict organism presence 
and/or absence and sometimes species’ relative abundance167,168. 
High-throughput sequencing offers the possibility to assess overall 
biodiversity by simultaneously identifying multiple species through 
eDNA metabarcoding, which is being used to document community 
structure in both aquatic and terrestrial ecosystems169. More recently, 
eDNA metabarcoding protocols have been developed to detect species 
occurrence in airborne DNA samples170–172.

In the context of GCC, eDNA metabarcoding can be used to track 
shifts in community composition (animals, plants and microorgan-
isms) across time, depending on the environmental selective pres-
sures that occur when the DNA of organisms is trapped in substrate. 
Two approaches are used to study community composition changes 
with GCC: laboratory or mesocosm-based experiments173,174 (Fig. 7a), 
which offer a high degree of control; and time series sampling across 
a spatial gradient175–177 (Fig. 7b), which leverages the high variability 
offered by the local environment to predict which species will decline 
or burst relative to those present today174,176. Metagenomics and shot-
gun sequencing, which are generally more microorganism-focused 
than metabarcoding, can also inform about temporal variation in 
community composition (reviewed elsewhere178). A controlled labo-
ratory experiment showed that coral-associated microbiota shifted 
from a community composition associated with healthy corals to one 
generally found on diseased corals in abiotic conditions that mimic 
future GCC179.

At the spatial level, eDNA metabarcoding and metagenomics allow 
monitoring of biogeographical community range shifts and investi-
gate how animals and plants can cope with changing environmental 
conditions by migrating to sites that are more favourable to their 
biology178,180,181. These studies often combine eDNA results with com-
puting projections and machine learning to build habitat occupancy 
models for species under different GCC scenarios. Metabarcoding data 
collected during five consecutive years was used to model diatom rich-
ness in response to projected GCC and predicted range shifts towards 
the poles180. Combining genomics with other approaches is particularly 
helpful for managing invasive species, whose predicted geographical 
expansion might affect native species ranges during GCC182,183.

In the context of GCC, eDNA metabarcoding can be used to track 
temporal shifts in community composition associated with environ-
mental change, relying on the DNA of organisms becoming trapped in 
substrate184. Ancient DNA (aDNA)185,186 can infer previous community 
composition with greater taxonomic resolution, spatial and tempo-
ral precision than other palaeoecological methods184,187. However, 
its application is more challenging compared with eDNA because of 
DNA degradation, modification and strand damage that occur with 
time. Also, sequencing aDNA is challenging as only short reads are 
generally attainable184. The analysis of aDNA retrieved from permafrost 
and sediments can allow documentation of community composition 
up to 50,000 years ago185,187. The oldest aDNA discovered to date was 
2-million-year-old DNA trapped in North Greenland ice sediment, which 
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was linked to a rich assemblage of plants and animals188. aDNA analysis 
offers fine resolution to reconstruct temporal dynamics of community 
shifts184,187,189–192. aDNA extracted from fossil rodent middens, small piles 
of seeds, bones or leaves gathered by rodents, allowed reconstruction 

of late Quaternary vegetation dynamics, showing perennial species 
displacement ~1,000 m downhill during pluvial events191. aDNA analysis 
can also track extirpations and extinctions185 associated with glacial 
events in mammals193 and plants194. Reconstruction of community 

a Divergent transcriptional profiles in locally adapted Australian rainbowfish b Divergent DNA methylation in corals from di�erent thermal regimes

c Hypothetical plastic responses to altered thermal environment with phenotypic and fitness outcomes
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Fig. 6 | The role of transcriptional and epigenetic plasticity in response 
to global climate change. When populations exist in different thermal 
environments, they can develop transcriptional and epigenetic differences, 
potentially due to thermal acclimation or adaptation. The capacity for plasticity 
in response to changing thermal environments can affect the persistence of 
organisms enduring climate change. a, Sandoval-Castillo et al.9 showed that 
divergent selection on gene expression led to non-parallel transcriptional 
responses to thermal stress that differed between subtropical, temperate and 
desert Australian rainbowfish ecotypes (Melanotaenia spp.). RNA sequencing 
detected 34,815 transcripts among the three ecotypes; 236 genes responded to 
temperature treatment, with only ten expression changes shared between two 
ecotypes and five shared between all three. The ecotypes had different thermal 
tolerances as measured by CTmax, with warm-adapted subtropical rainbowfish 
showing the greatest tolerance for warming and capacity for transcriptional 
plasticity. b, Dixon et al.164 reciprocally transplanted stony coral (Acropora 
millepora) from two different thermal environments and used methyl-binding 

domain sequencing to analyse gene body DNA methylation of 27,084 genes. 
Corals that were able to assume the methylation state of local corals had 
improved fitness-related traits relative to corals that did not resemble local corals 
epigenetically. Methylation differences were also correlated with transcription, 
as measured using TagSeq. c, Hypothetical effects of transcriptional and 
epigenetic plasticity in response to altered thermal environment: (1) if organisms 
are unable to respond to their environment through transcriptional or epigenetic 
changes, resulting in an inability to cope with changing temperatures, this could 
lead to increased mortality; (2) if organisms can adopt the transcriptional state or 
DNA methylation patterns of local conspecifics, plasticity could lead to increased 
fitness in altered thermal environments164; and (3) if populations differ in their 
capacity for plasticity (for example, owing to divergent selection from different 
thermal environments) or the nature of plastic responses they show (for example, 
different genes), they may show divergent plastic responses to altered temperature 
environments. This could lead to populations exhibiting differences in resistance to, 
and potential persistence in, novel thermal environments9.
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Fig. 7 | eDNA metabarcoding approaches to monitor temporal switches in 
community composition with global climate change. a, Ferguson et al.174 used 
marine mesocosms to examine the impacts of warming, nutrient enrichment and 
altered top-predator population size structure (common shore crab Carcinus 
maenas) on coastal microbial biofilm communities in a crossed experimental 
design. An environmental DNA (eDNA) metabarcoding approach was used by the 
authors. Based on Illumina MiSeq sequencing of the 16S mitochondrial rRNA gene, 
they showed that warming and top-predator population size structure both affected 
bacterial biofilm community composition. Warming increased the abundance of 
bacteria capable of increased mineralization of dissolved and particulate organic 
matter, such as flavobacteria, Sphingobacteria and Cytophagia. b. Gallego et al.176 
took advantage of the existence of a wide variety of ecosystems within two regions 
(San Juan Island and the Hood Canal) of the Puget Sound in Washington (USA) to 
test the effect of environmental parameters on zooplankton marine communities 
under conditions expected worldwide in the near future. Despite their geographical 

proximity, these two regions experience substantial differences in environmental 
conditions (in terms of temperature, pH and CO2), with the Hood Canal resembling 
future conditions in temperate areas worldwide. The eDNA metabarcoding 
approach used by the authors included Illumina MiSeq sequencing of the COI 
mitochondrial gene. They identified distinct communities in warmer and more 
acidified conditions, with overall reduced richness in diatom assemblages and 
increased richness in dinoflagellates. The authors used their results to build models 
to forecast near-term community changes and to determine the probability of 
the presence of each individual taxon for 2095 compared with 2017. Their results 
suggest a possible change in relative dominance between diatoms and other 
phytoplankton species such as dinoflagellates. They also highlight an increased 
environmental suitability for the coccolithophore Emiliania huxleyi and the harmful 
Alexandrium sp. mtDNA, mitochondrial DNA. Bottom panel in part a is adapted 
from ref. 174, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Map and 
bottom panel in part b adapted with permission from ref. 176, The Royal Society.

https://creativecommons.org/licenses/by/4.0/
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responses to past environmental events provides a unique opportunity 
to forecast how contemporary communities will change with GCC. 
Extinction models based on aDNA data that link community fluctua-
tions with environmental variation can elucidate the role of humans 
in these processes195.

eDNA, aDNA metabarcoding and metagenomics provide new 
insights into community responses to GCC, but do not predict whether 
new species will colonize an environment or how species adapt to 
future conditions. Neither do they differentiate between living and 
dead organisms185. Environmental RNA (eRNA) offers a promising 
avenue of research that could pave the way to new disciplines, includ-
ing environmental transcriptomics, which could be used to noninva-
sively assess at the community level the role of plasticity in coping with 
GCC196. However, rapid medical, forensic and environmental advances 

in eDNA analysis are raising privacy and ethical concerns, requiring 
future legal considerations197.

The above approaches are not mutually exclusive. Holistic com-
munity reconstructions will require the integration of various meth-
odologies such as the use of multiple markers in metabarcoding, both 
universal and more specific primers, and shotgun sequencing. This will 
ultimately allow a better understanding of how a broad array of taxa 
will react to GCC, which is crucial to understand, as heterogeneous 
taxonomic groups may show contrasting responses to GCC198.

Conclusions and perspectives
Our capacity to monitor and understand species’ responses to GCC 
will be enhanced by integration of multi-omics methods with other 
types of data5,6,60. Studies considering several evolutionary processes 
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population evolve phenotypes that 
have higher relative fitness in their home 
conditions compared with organisms 
in other populations in spatially 
heterogeneous environments.

Nonsense substitutions
Point mutations in a sequence of DNA 
that result in a premature stop codon.

Non-synonymous 
substitutions
Nucleotide mutation that alter the 
amino acid sequence of a protein.

Otoliths
Calcium carbonate structures in the 
inner ear of vertebrates.

Quantitative trait loci
(QTLs). Genetic variants associated with 
changes in expression (eQTL) or DNA 
methylation (methylQTL) levels.

Rescue effects
An increase in population size or 
fitness, thereby reducing the risk of 
extinction and facilitating long-term 
population persistence. Three 
eco-evolutionary processes promote 
rescue effects: demographic rescue, 
that is, an increase in the number of 
individuals in a population; genetic 
rescue, that is, an increase in population 
fitness via the genetic contribution 
of immigrants, by either decreasing 
inbreeding depression or increasing 
genetic variation to promote adaptation; 
evolutionary rescue, that is, an increase 
in population growth rates caused 
by adaptation to new or changing 
conditions, usually from standing 
genetic variation but some definitions 
include migration.

Standing genetic variation
Pre-existing genetic variation in a 
population on which selection can 
act readily.

Structural variation
A region of the genome that 
shows inter-individual variability 
due to a chromosomal alteration, 
including variation in chromosomal 
location (for example, translocation), 
rearrangement of chromosome 
orientation (for example, inversion) or 
copy number variation (for example, 
duplications, insertions, deletions).
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to predict the fate of species are steps towards a more comprehensive 
integration of population genomics with GCC science199–202. Moreover, 
multi-omic data sets will enhance studies on the evolution of plasticity 
and its relationship to genomic variation, furthering our understanding 
of how and when plasticity can aid species experiencing GCC. Plastic-
ity has commonly been considered separate from adaptive variation, 
which is often assumed to be genetic, although recent studies show-
ing plastic contributions to fitness and adaptation or maladaptation 
suggest that plasticity should be considered in tandem with other 
sources of adaptive variation. Future incorporation of other genomic 
methods into plasticity studies (for example, landscape transcriptom-
ics, epigenomics and proteomics; GEA-type analyses) would further 
improve our understanding of the role of plasticity in GCC response 
and of when plasticity and genetic adaptation occur independently 
or in tandem.

Relating epigenomic and genomic variation to phenotype 
and fitness in different environments through time could improve 
our understanding of species’ evolutionary potential in the face of 
GCC203. Although this is still challenging, it is becoming feasible with 
methodological advances that assess multi-omics contributions to 
phenotypes204–207 and their underlying genetic architecture204. Such an 
integrative approach could provide greater insight into the molecular 
basis of complex phenotypes that confer environmental adaptation 
compared with the analysis of a single type of omic data set. The rise 
of long-read sequencing has largely enabled the discovery of structural 
variation, revealing the contribution of large-effect mutations in 
genetic adaptation208–211. However, like single SNPs, the functional 
and the fitness consequences of their polymorphism remain mostly 
unknown. Integrating multi-omics methods with resurrection ecol-
ogy or E&R experiments would be particularly powerful. Epigenomic 
or genomic variation between ancestors and descendants can also be 
compared to determine the molecular basis of phenotypic change 
through generations212. Once ecologically relevant genes are identified, 
their phenotypic effects and genetic architecture can be confirmed 
through methods that include controlled breeding designs and CRISPR 
editing113. However, some epigenetic or genetic variation may show no 
association with phenotype or fitness, or may show variable fitness 
outcomes in different environments, which may limit our ability to 
relate multi-omic variation to tangible GCC responses.

Advances in biomarker detection techniques could improve 
ecosystem monitoring and assessment of adaptive potential during 
GCC. Liquid biopsy could be used to noninvasively develop multi-omic 
biomarkers for ecosystem health, including microbial community 
composition213. Epigenetic biomarkers can provide information on past 
thermal stress214 and demographic characteristics (for example, sex214 
or age215) and could be used to identify biomarkers of thermal resilience 
in natural populations, although there are still few studies that have 
analysed epigenetic biomarkers in the context of GCC.

Modelling techniques can predict species’ responses to environ-
mental change through time and provide an efficient means to relate 
temporal multi-omic variation to GCC-induced phenotypic and fitness 
consequences. Machine learning can aid in biomarker detection214 and 
predict future consequences of GCC for organisms through forward 
modelling, whereby predictions are made about outcomes or the 
behaviour of a system given a particular model216. Improvements to 
individual-based modelling (IBM) frameworks provide a powerful way 
to explore impacts of GCC on species’ persistence under increasingly 
complex eco-evolutionary scenarios217. Integral projection models are 
also used to model demographic changes due to genetic variation218 

and could be expanded to use large-scale genomic data in the context of 
GCC. Integrating eDNA metabarcoding and modelling can aid in infer-
ring the effects of environmental, geographical and socioeconomic 
factors on community diversity219. However, biomarkers and novel 
modelling approaches will require critical evaluation to assess their 
utility in predicting GCC responses in natural systems.

Genomics methods have provided insights into how GCC affects 
species, although increased availability of genomic resources and 
open data are needed. Reference genomes are becoming increasingly 
available through initiatives such as the Earth Biogenome Project220, 
thus improving the feasibility of studies in non-model organisms, 
although many remain understudied. For example, primary produc-
ers such as microbial eukaryotes are crucial for ecosystem function, 
although the effects of GCC on microbes, their genomes and subse-
quent ecosystem effects are unclear. Requirements for open data and 
reproducible code221, standardized data reporting and availability of 
georeferenced environmental data222 will facilitate meta-analyses223 
and conservation macrogenetics224,225. Successful conservation and 
monitoring during GCC will require the development of science–
policy–society interactions226,227 and continual reassessment of evolv-
ing omics approaches to inform decision-making. Holistic applications 
of omics tools could mitigate the effects of GCC on biodiversity, con-
tribute to restoring ecosystems and improve health, food security and 
a sustainable global bioeconomy.

Published online: xx xx xxxx
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